Copied to
clipboard

G = C10×C8.C22order 320 = 26·5

Direct product of C10 and C8.C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C10×C8.C22, C40.50C23, C20.83C24, Q163(C2×C10), C4.67(D4×C10), (C10×Q16)⋊25C2, (C2×Q16)⋊11C10, (C2×SD16)⋊5C10, SD162(C2×C10), (C2×C20).526D4, C20.330(C2×D4), C4.6(C23×C10), C8.1(C22×C10), (C22×Q8)⋊9C10, C23.51(C5×D4), (C10×SD16)⋊16C2, (C2×M4(2))⋊4C10, M4(2)⋊4(C2×C10), (C5×Q16)⋊17C22, (Q8×C10)⋊55C22, (C5×D4).36C23, D4.3(C22×C10), C22.24(D4×C10), Q8.3(C22×C10), (C5×Q8).37C23, (C10×M4(2))⋊14C2, (C2×C20).976C23, (C2×C40).280C22, (C5×SD16)⋊18C22, C10.204(C22×D4), (C22×C10).173D4, (D4×C10).329C22, (C5×M4(2))⋊30C22, (C22×C20).466C22, (Q8×C2×C10)⋊21C2, C2.28(D4×C2×C10), (C2×C8).32(C2×C10), (C2×Q8)⋊15(C2×C10), (C2×C4).137(C5×D4), (C2×C4○D4).12C10, (C10×C4○D4).26C2, C4○D4.13(C2×C10), (C2×D4).75(C2×C10), (C2×C10).420(C2×D4), (C2×C4).46(C22×C10), (C22×C4).77(C2×C10), (C5×C4○D4).58C22, SmallGroup(320,1576)

Series: Derived Chief Lower central Upper central

C1C4 — C10×C8.C22
C1C2C4C20C5×D4C5×SD16C5×C8.C22 — C10×C8.C22
C1C2C4 — C10×C8.C22
C1C2×C10C22×C20 — C10×C8.C22

Generators and relations for C10×C8.C22
 G = < a,b,c,d | a10=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, dcd=b4c >

Subgroups: 370 in 258 conjugacy classes, 162 normal (30 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C10, C10, C10, C2×C8, M4(2), SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4○D4, C20, C20, C20, C2×C10, C2×C10, C2×C10, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C22×Q8, C2×C4○D4, C40, C2×C20, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, C22×C10, C22×C10, C2×C8.C22, C2×C40, C5×M4(2), C5×SD16, C5×Q16, C22×C20, C22×C20, D4×C10, D4×C10, Q8×C10, Q8×C10, Q8×C10, C5×C4○D4, C5×C4○D4, C10×M4(2), C10×SD16, C10×Q16, C5×C8.C22, Q8×C2×C10, C10×C4○D4, C10×C8.C22
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C24, C2×C10, C8.C22, C22×D4, C5×D4, C22×C10, C2×C8.C22, D4×C10, C23×C10, C5×C8.C22, D4×C2×C10, C10×C8.C22

Smallest permutation representation of C10×C8.C22
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 142 67 125 60 119 50 138)(2 143 68 126 51 120 41 139)(3 144 69 127 52 111 42 140)(4 145 70 128 53 112 43 131)(5 146 61 129 54 113 44 132)(6 147 62 130 55 114 45 133)(7 148 63 121 56 115 46 134)(8 149 64 122 57 116 47 135)(9 150 65 123 58 117 48 136)(10 141 66 124 59 118 49 137)(11 90 28 107 159 93 31 74)(12 81 29 108 160 94 32 75)(13 82 30 109 151 95 33 76)(14 83 21 110 152 96 34 77)(15 84 22 101 153 97 35 78)(16 85 23 102 154 98 36 79)(17 86 24 103 155 99 37 80)(18 87 25 104 156 100 38 71)(19 88 26 105 157 91 39 72)(20 89 27 106 158 92 40 73)
(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(21 152)(22 153)(23 154)(24 155)(25 156)(26 157)(27 158)(28 159)(29 160)(30 151)(41 68)(42 69)(43 70)(44 61)(45 62)(46 63)(47 64)(48 65)(49 66)(50 67)(71 104)(72 105)(73 106)(74 107)(75 108)(76 109)(77 110)(78 101)(79 102)(80 103)(111 140)(112 131)(113 132)(114 133)(115 134)(116 135)(117 136)(118 137)(119 138)(120 139)(121 148)(122 149)(123 150)(124 141)(125 142)(126 143)(127 144)(128 145)(129 146)(130 147)
(1 79)(2 80)(3 71)(4 72)(5 73)(6 74)(7 75)(8 76)(9 77)(10 78)(11 114)(12 115)(13 116)(14 117)(15 118)(16 119)(17 120)(18 111)(19 112)(20 113)(21 136)(22 137)(23 138)(24 139)(25 140)(26 131)(27 132)(28 133)(29 134)(30 135)(31 130)(32 121)(33 122)(34 123)(35 124)(36 125)(37 126)(38 127)(39 128)(40 129)(41 99)(42 100)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)(49 97)(50 98)(51 103)(52 104)(53 105)(54 106)(55 107)(56 108)(57 109)(58 110)(59 101)(60 102)(61 89)(62 90)(63 81)(64 82)(65 83)(66 84)(67 85)(68 86)(69 87)(70 88)(141 153)(142 154)(143 155)(144 156)(145 157)(146 158)(147 159)(148 160)(149 151)(150 152)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,142,67,125,60,119,50,138)(2,143,68,126,51,120,41,139)(3,144,69,127,52,111,42,140)(4,145,70,128,53,112,43,131)(5,146,61,129,54,113,44,132)(6,147,62,130,55,114,45,133)(7,148,63,121,56,115,46,134)(8,149,64,122,57,116,47,135)(9,150,65,123,58,117,48,136)(10,141,66,124,59,118,49,137)(11,90,28,107,159,93,31,74)(12,81,29,108,160,94,32,75)(13,82,30,109,151,95,33,76)(14,83,21,110,152,96,34,77)(15,84,22,101,153,97,35,78)(16,85,23,102,154,98,36,79)(17,86,24,103,155,99,37,80)(18,87,25,104,156,100,38,71)(19,88,26,105,157,91,39,72)(20,89,27,106,158,92,40,73), (11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,160)(30,151)(41,68)(42,69)(43,70)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(71,104)(72,105)(73,106)(74,107)(75,108)(76,109)(77,110)(78,101)(79,102)(80,103)(111,140)(112,131)(113,132)(114,133)(115,134)(116,135)(117,136)(118,137)(119,138)(120,139)(121,148)(122,149)(123,150)(124,141)(125,142)(126,143)(127,144)(128,145)(129,146)(130,147), (1,79)(2,80)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,111)(19,112)(20,113)(21,136)(22,137)(23,138)(24,139)(25,140)(26,131)(27,132)(28,133)(29,134)(30,135)(31,130)(32,121)(33,122)(34,123)(35,124)(36,125)(37,126)(38,127)(39,128)(40,129)(41,99)(42,100)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,97)(50,98)(51,103)(52,104)(53,105)(54,106)(55,107)(56,108)(57,109)(58,110)(59,101)(60,102)(61,89)(62,90)(63,81)(64,82)(65,83)(66,84)(67,85)(68,86)(69,87)(70,88)(141,153)(142,154)(143,155)(144,156)(145,157)(146,158)(147,159)(148,160)(149,151)(150,152)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,142,67,125,60,119,50,138)(2,143,68,126,51,120,41,139)(3,144,69,127,52,111,42,140)(4,145,70,128,53,112,43,131)(5,146,61,129,54,113,44,132)(6,147,62,130,55,114,45,133)(7,148,63,121,56,115,46,134)(8,149,64,122,57,116,47,135)(9,150,65,123,58,117,48,136)(10,141,66,124,59,118,49,137)(11,90,28,107,159,93,31,74)(12,81,29,108,160,94,32,75)(13,82,30,109,151,95,33,76)(14,83,21,110,152,96,34,77)(15,84,22,101,153,97,35,78)(16,85,23,102,154,98,36,79)(17,86,24,103,155,99,37,80)(18,87,25,104,156,100,38,71)(19,88,26,105,157,91,39,72)(20,89,27,106,158,92,40,73), (11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,160)(30,151)(41,68)(42,69)(43,70)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(71,104)(72,105)(73,106)(74,107)(75,108)(76,109)(77,110)(78,101)(79,102)(80,103)(111,140)(112,131)(113,132)(114,133)(115,134)(116,135)(117,136)(118,137)(119,138)(120,139)(121,148)(122,149)(123,150)(124,141)(125,142)(126,143)(127,144)(128,145)(129,146)(130,147), (1,79)(2,80)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,111)(19,112)(20,113)(21,136)(22,137)(23,138)(24,139)(25,140)(26,131)(27,132)(28,133)(29,134)(30,135)(31,130)(32,121)(33,122)(34,123)(35,124)(36,125)(37,126)(38,127)(39,128)(40,129)(41,99)(42,100)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,97)(50,98)(51,103)(52,104)(53,105)(54,106)(55,107)(56,108)(57,109)(58,110)(59,101)(60,102)(61,89)(62,90)(63,81)(64,82)(65,83)(66,84)(67,85)(68,86)(69,87)(70,88)(141,153)(142,154)(143,155)(144,156)(145,157)(146,158)(147,159)(148,160)(149,151)(150,152) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,142,67,125,60,119,50,138),(2,143,68,126,51,120,41,139),(3,144,69,127,52,111,42,140),(4,145,70,128,53,112,43,131),(5,146,61,129,54,113,44,132),(6,147,62,130,55,114,45,133),(7,148,63,121,56,115,46,134),(8,149,64,122,57,116,47,135),(9,150,65,123,58,117,48,136),(10,141,66,124,59,118,49,137),(11,90,28,107,159,93,31,74),(12,81,29,108,160,94,32,75),(13,82,30,109,151,95,33,76),(14,83,21,110,152,96,34,77),(15,84,22,101,153,97,35,78),(16,85,23,102,154,98,36,79),(17,86,24,103,155,99,37,80),(18,87,25,104,156,100,38,71),(19,88,26,105,157,91,39,72),(20,89,27,106,158,92,40,73)], [(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(21,152),(22,153),(23,154),(24,155),(25,156),(26,157),(27,158),(28,159),(29,160),(30,151),(41,68),(42,69),(43,70),(44,61),(45,62),(46,63),(47,64),(48,65),(49,66),(50,67),(71,104),(72,105),(73,106),(74,107),(75,108),(76,109),(77,110),(78,101),(79,102),(80,103),(111,140),(112,131),(113,132),(114,133),(115,134),(116,135),(117,136),(118,137),(119,138),(120,139),(121,148),(122,149),(123,150),(124,141),(125,142),(126,143),(127,144),(128,145),(129,146),(130,147)], [(1,79),(2,80),(3,71),(4,72),(5,73),(6,74),(7,75),(8,76),(9,77),(10,78),(11,114),(12,115),(13,116),(14,117),(15,118),(16,119),(17,120),(18,111),(19,112),(20,113),(21,136),(22,137),(23,138),(24,139),(25,140),(26,131),(27,132),(28,133),(29,134),(30,135),(31,130),(32,121),(33,122),(34,123),(35,124),(36,125),(37,126),(38,127),(39,128),(40,129),(41,99),(42,100),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96),(49,97),(50,98),(51,103),(52,104),(53,105),(54,106),(55,107),(56,108),(57,109),(58,110),(59,101),(60,102),(61,89),(62,90),(63,81),(64,82),(65,83),(66,84),(67,85),(68,86),(69,87),(70,88),(141,153),(142,154),(143,155),(144,156),(145,157),(146,158),(147,159),(148,160),(149,151),(150,152)]])

110 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4J5A5B5C5D8A8B8C8D10A···10L10M···10T10U···10AB20A···20P20Q···20AN40A···40P
order1222222244444···45555888810···1010···1010···1020···2020···2040···40
size1111224422224···4111144441···12···24···42···24···44···4

110 irreducible representations

dim11111111111111222244
type+++++++++-
imageC1C2C2C2C2C2C2C5C10C10C10C10C10C10D4D4C5×D4C5×D4C8.C22C5×C8.C22
kernelC10×C8.C22C10×M4(2)C10×SD16C10×Q16C5×C8.C22Q8×C2×C10C10×C4○D4C2×C8.C22C2×M4(2)C2×SD16C2×Q16C8.C22C22×Q8C2×C4○D4C2×C20C22×C10C2×C4C23C10C2
# reps1122811448832443112428

Matrix representation of C10×C8.C22 in GL6(𝔽41)

3100000
0310000
0037000
0003700
0000370
0000037
,
10370000
15310000
0034272020
0014342120
00714714
00277277
,
100000
5400000
001000
0004000
00400400
000101
,
4000000
0400000
001020
000102
0000400
0000040

G:=sub<GL(6,GF(41))| [31,0,0,0,0,0,0,31,0,0,0,0,0,0,37,0,0,0,0,0,0,37,0,0,0,0,0,0,37,0,0,0,0,0,0,37],[10,15,0,0,0,0,37,31,0,0,0,0,0,0,34,14,7,27,0,0,27,34,14,7,0,0,20,21,7,27,0,0,20,20,14,7],[1,5,0,0,0,0,0,40,0,0,0,0,0,0,1,0,40,0,0,0,0,40,0,1,0,0,0,0,40,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,2,0,40,0,0,0,0,2,0,40] >;

C10×C8.C22 in GAP, Magma, Sage, TeX

C_{10}\times C_8.C_2^2
% in TeX

G:=Group("C10xC8.C2^2");
// GroupNames label

G:=SmallGroup(320,1576);
// by ID

G=gap.SmallGroup(320,1576);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,1128,3446,10085,5052,124]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,d*c*d=b^4*c>;
// generators/relations

׿
×
𝔽